Exhibit 300 (BY2010) | | PART ONE | |--------------------------------------|--| | | OVERVIEW | | 1. Date of Submission: | 2008-09-08 | | 2. Agency: | 026 | | 3. Bureau: | 00 | | 4. Name of this Capital Asset: | GSFC Earth Observing Sys Data Info Sys | | 5. Unique Project
Identifier: | 026-00-01-04-01-1501-00 | | 6. What kind of investment will this | s be in FY2010? | | Operations and Maintenance | | 7. What was the first budget year this investment was submitted to OMB? 11.a. What is the current FAC-P/PM certification level of the project/program manager? FY2001 or earlier 8. Provide a brief summary and justification for this investment, including a brief description of how this closes in part or in whole an identified agency performance gap. The Earth Observing System Data and Information System (EOSDIS) is a highly specialized, distributed system of systems designed to support NASA's EOS research community. It also provides complementary, real-time science data for operational use by other agencies. EOSDIS processes, archives, and distributes Earth science data from NASA missions and provides real-time spacecraft control and feedback loop model processing for the EOS missions. Data are processed at near real-time rates or faster to support NASA's field campaigns that require processed scientific products in near real-time to coincide with the measurements of fielddeployed assets; support for benchmarking near real-time applications with operational agencies such as NOAA (weather models), DoD (field conditions), and DoI (forest fire information); support for processing into higher level, discipline unique scientific products and archived for future use without building a processing backlog. Unique scientific products generated by EOSDIS need to be frequently reprocessed due to changes in instrument characteristics and improvements to scientific algorithms. This involves reprocessing the entire missions' data within short periods of time, requiring systems that must operate many times faster than near real-time rates. This system of systems is distributed throughout the US, providing discipline unique tools, search capabilities and sub-setting capabilities built around the specific science. These areas include: land processes, snow and ice, atmospheric composition, physical oceanography and geodesy. While COTS hardware and software are used in EOSDIS, the COTS software is limited to operating systems and database management systems. The majority of the software is custom code, utilizing unique algorithms to accommodate the different instrumentation and science disciplines. The unprecedented and unique nature of the scientific applications as well as the high-speed capabilities needed to manage the processes involved in automatically generating the scientific products ensures that they can be instantaneously searched and accessed in order to distribute them to a broad, multidisciplinary user community on a daily basis. EOSDIS is in its operational phase now supporting all EOS missions including the Aura mission launched in July 2004. At the end of FY07, EOSDIS archives held 4.9 petabytes of data, growing at ~3 terabytes per day and supporting distribution to users at 3 to 4 terabytes/day | Senior/Expert/DAWIA-Level 3 | | |--|---| | 11.b. When was the Program/Project | t Manager Assigned? | | 2003-01-06 | | | | ject Manager receive the FACP/PM certification? If the certification has not been issued, what is the anticipated | | 2008-08-08 | | | 12. Has the agency developed and/o | or promoted cost effective, energy-efficient and environmentally sustainable techniques or practices for this project. | | yes | | | 12.a. Will this investment include ele | ctronic assets (including computers)? | | yes | | | 12.b. Is this investment for new cons | truction or major retrofit of a Federal building or facility? (answer applicable to non-IT assets only) | | no | | | 13. Does this investment directly sup | port one of the PMA initiatives? | | yes | | | If yes, select the initiatives that apply | : | | Budget Performance Integration | n | | Competitive Sourcing | | | Expanded E-Government | | | 13.a. Briefly and specifically describe approved shared service provider or | e for each selected how this asset directly supports the identified initiative(s)? (e.g. If E-Gov is selected, is it an | | EOSDIS supports Budget Perforr implementation. It supports Exp users, and maintains web sites of | mance Integration by defining and meeting specific performance goals in its planning and anded E-Government through electronic distribution of EOS data to its hundreds of thousands of designed to facilitate access to EOS data by citizens and organizations. It engages in Competitive election of data/service providers and fostering collaboration with universities and industry. | | 14. Does this investment support a p | rogram assessed using the Program Assessment Rating Tool (PART)? | | yes | | | 14.a. If yes, does this investment add | dress a weakness found during the PART review? | | no | | | 14.b. If yes, what is the name of the | PARTed program? | | 10004392 - NASA Earth-Sun Sys | tem Research | | 14.c. If yes, what rating did the PART | □ receive? | | Moderately Effective | | | 15. Is this investment for information | technology? | | yes | | | 16. What is the level of the IT Project | ! (per CIO Council's PM Guidance)? | | Level 2 | | | 17. What project management qualifi | ications does the Project Manager have? (per CIO Council's PM Guidance) | | (1) Project manager has been va | alidated as qualified for this investment | | 18. Is this investment identified as high | gh risk on the Q4 - FY 2008 agency high risk report (per OMB memorandum M-05-23)? | | no | | | 19. Is this a financial management sy | vstem? | | no | | | 20. What is the percentage breakout | for the total FY2010 funding request for the following? (This should total 100%) | | Hardware | 9 | | Software | 18 | |----------|----| | Services | 70 | | Other | 3 | 21. If this project produces information dissemination products for the public, are these products published to the Internet in conformance with OMB Memorandum 05-04 and included in your agency inventory, schedules and priorities? ves 22. Contact information of individual responsible for privacy related questions. Vame Patti Stockman Phone Number 202-358-4787 Title **NASA Privacy Officer** Email patti.stockman@nasa.gov 23. Are the records produced by this investment appropriately scheduled with the National Archives and Records Administration's approval? ves 24. Does this investment directly support one of the GAO High Risk Areas? no # **SUMMARY OF SPEND** 1. Provide the total estimated life-cycle cost for this investment by completing the following table. All amounts represent budget authority in millions, and are rounded to three decimal places. Federal personnel costs should be included only in the row designated Government FTE Cost, and should be excluded from the amounts shown for Planning, Full Acquisition, and Operation/Maintenance. The total estimated annual cost of the investment is the sum of costs for Planning, Full Acquisition, and Operation/Maintenance. For Federal buildings and facilities, life-cycle costs should include long term energy, environmental, decommissioning, and/or restoration costs. The costs associated with the entire life-cycle of the investment should be included in this report. All amounts represent Budget Authority (Estimates for BY+1 and beyond are for planning purposes only and do not represent budget decisions) | | PY-1 & Earlier | PY | CY | ВҮ | |---------------------------------|----------------|---------|---------|--------| | | -2007 | 2008 | 2009 | 2010 | | Planning Budgetary Resources | 0 | 0 | 0 | 0 | | Acquisition Budgetary Resources | 2437.859 | 7.352 | 0 | 0 | | Maintenance Budgetary Resources | 855.226 | 109.546 | 102.455 | 99.278 | | Government FTE Cost | 37.78 | 6.272 | 6.375 | 7.332 | | # of FTEs | 268 | 42 | 38 | 40 | Note: For the cross-agency investments, this table should include all funding (both managing partner and partner agencies). Government FTE Costs should not be included as part of the TOTAL represented. 2. Will this project require the agency to hire additional FTE's? no 3. If the summary of spending has changed from the FY2009 President's budget request, briefly explain those changes. No change ### **PERFORMANCE** In order to successfully address this area of the exhibit 300, performance goals must be provided for the agency and be linked to the annual performance plan. The investment must discuss the agency's mission and strategic goals, and performance measures (indicators) must be provided. These goals need to map to the gap in the agency's strategic goals and objectives this investment is designed to fill. They are the internal and external performance benefits this investment is expected to deliver to the agency (e.g., improve efficiency by 60 percent, increase citizen participation by 300 percent a year to achieve an overall citizen participation rate of 75 percent by FY 2xxx, etc.). The goals must be clearly measurable investment outcomes, and if applicable, investment outputs. They do not include the completion date of the module, milestones, or investment, or general goals, such as, significant, better, improved that do not have a quantitative measure. Agencies must use the following table to report performance goals and measures for the major investment and use the Federal Enterprise Architecture (FEA) Performance Reference Model (PRM). Map all Measurement Indicators to the corresponding Measurement Area and Measurement Grouping identified in the PRM. There should be at least one Measurement Indicator for each of the four different Measurement Areas (for each fiscal year). The PRM is available at www.egov.gov. The table can be extended to include performance measures for years beyond the next President's Budget. | | Fiscal
Year | Strategic
Goal
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Planned
Improvement
to the
Baseline | Actual
Results | |---|----------------|---|------------------------------------|---|--|--|---|--| | 1 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Customer
Results | Customer
Satisfaction | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI) | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI)
for FY2008 | Exceed the
Federal
Government
Average score
for the Average
Customer
Satisfaction
Index (ACSI)
for FY2008 | The EOSDIS
ACSI
measured in
FY2007 was
75, which
exceeded the
Federal
Government
Averaged
score of 71;
the Survey
for FY 08 will
be conducted
later in the
year. | | 2 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of users that access EOSDIS. | Number of
users that
accessed
EOSDIS in
FY2007 was
647K | Maintain or
increase the
number of
users that
accessed
EOSDIS in
FY2007 | The number of unique users accessing EOSDIS in FY2008 is ~750K (extrapolated from actuals through the end of June) | | 3 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of products distributed | The number
of products
distributed in
FY2007 was
112M. | Maintain or
increase the
number of
products
distributed | 125M
products
were
distributed in
FY2008
(extrapolated
from actuals
through end
of June) | | 4 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Processes and
Activities | Timeliness | Average time to respond to users | Average time
to respond to
users in
FY2007 | Maintain or
decrease the
average time it
takes to
respond to
users | Average time it takes to respond to users in FY2008 is one day when manual intervention is involved. However, | | | | | | | | | | usage of Data
Pools for
electronic
access to
data has
increased,
and in those
cases the
response to
users occurs
within a few
minutes. | |----|------|---|------------------------------------|---|--|--|---|---| | 5 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Technology | IT Composition | Percentage of
commodity
based versus
enterprise class
servers. | Replace high
end expensive
enterprise
class servers
with less
expensive
commodity
based
servers. | Over 50 % of
EOSDIS
servers are
commodity-
based. | Commodity-
based servers
represent
approximately
75% of
EOSDIS
servers
(estimate as
of June 2008) | | 6 | 2008 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Technology | Operations and
Maintenance
Costs | Number of
operations and
sustaining
engineering
staff. | FY2007
staffing across
sites | Reduce
number by 10
FTE | Staffing was reduced by 10 FTE in FY2008 (estimate based on information thru end of June 2008) | | 7 | 2009 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Customer
Results | Customer
Satisfaction | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI) | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI)
for FY2009 | Exceed the
Federal
Government
Average score
for the Average
Customer
Satisfaction
Index (ACSI)
for FY2009 | TBD | | 8 | 2009 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of
users that
access EOSDIS | Number of
users that
accessed
EOSDIS in
FY2008. | Maintain or
increase the
number of
users that
accessed
EOSDIS in
FY2008. | TBD | | 9 | 2009 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of products distributed | The number
of products
distributed in
FY2008 | Maintain or
increase the
number of
products
distributed | TBD | | 10 | 2009 | Goal 3:
Develop a
balanced
overall
program of | Processes and
Activities | Timeliness | Average time to respond to users | Average time
to respond to
users in
FY2008 | Maintain or
decrease the
average time it
takes to
respond to | TBD | | | | science,
exploration
and
aeronautics. | | | | | users | | |----|------|---|------------------------------------|---|---|--|---|-----| | 11 | 2009 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Technology | External Data
Sharing | Number of
EOSDIS data
centers with
geophysical
spatial
representation
applications. | Data centers
with limited
geophysical
spatial
representation
applications. | Most data
centers have
implemented
geophysical
spatial
representation
applications. | TBD | | 12 | 2009 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Technology | Operations and
Maintenance
Costs | Number of
operations and
sustaining
engineering
staff. | FY2008
staffing across
sites. | Reduce
number by 10
FTE. | TBD | | 13 | 2010 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Customer
Results | Customer
Satisfaction | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI) | Federal
Government
Average score
for American
Customer
Satisfaction
Index (ACSI)
for FY2010 | Exceed the
Federal
Government
Average score
for the Average
Customer
Satisfaction
Index (ACSI)
for FY2010 | TBD | | 14 | 2010 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of
users that
access EOSDIS | Number of
users that
accessed
EOSDIS in
FY2009. | Maintain or
increase the
number of
users that
accessed
EOSDIS in
FY2009. | TBD | | 15 | 2010 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Mission and
Business
Results | Scientific and
Technological
Research and
Innovation | Number of products distributed | The number
of products
distributed in
FY2009 | Maintain or
increase the
number of
products
distributed | TBD | | 16 | 2010 | Goal 3:
Develop a
balanced
overall
program of
science,
exploration
and
aeronautics. | Processes and
Activities | Timeliness | Average time to respond to users | Average time
to respond to
users in
FY2008 | Maintain or
decrease the
average time it
takes to
respond to
users | TBD | | 17 | 2010 | Goal 3:
Develop a
balanced | Technology | External Data
Sharing | Number of
EOSDIS data
centers with | Data centers
with limited
geophysical | All data centers
have
implemented | TBD | | overall program of science, exploration and aeronautics. | geophysical spatial representation applications. spatial representation applications. geophysical spatial representation applications. | |--|--| |--|--| # EΑ In order to successfully address this area of the business case and capital asset plan you must ensure the investment is included in the agency's EA and Capital Planning and Investment Control (CPIC) process, and is mapped to and supports the FEA. You must also ensure the business case demonstrates the relationship between the investment and the business, performance, data, services, application, and technology layers of the agency's EA. 1. Is this investment included in your agency's target enterprise architecture? yes 2. Is this investment included in the agency's EA Transition Strategy? yes 2.a. If yes, provide the investment name as identified in the Transition Strategy provided in the agency's most recent annual EA Assessment. #### **EOSDIS** 3. Is this investment identified in a completed (contains a target architecture) and approved segment architecture? yes 3.a. If yes, provide the six digit code corresponding to the agency segment architecture. The segment architecture codes are maintained by the agency Chief Architect. #### 326-000 4. Identify the service components funded by this major IT investment (e.g., knowledge management, content management, customer relationship management, etc.). Provide this information in the format of the following table. For detailed guidance regarding components, please refer to http://www.whitehouse.gov/omb/egov/. Component: Use existing SRM Components or identify as NEW. A NEW component is one not already identified as a service component in the FEA SRM. Reused Name and UPI: A reused component is one being funded by another investment, but being used by this investment. Rather than answer yes or no, identify the reused service component funded by the other investment and identify the other investment using the Unique Project Identifier (UPI) code from the OMB Ex 300 or Ex 53 submission. Internal or External Reuse?: Internal reuse is within an agency. For example, one agency within a department is reusing a service component provided by another agency within the same department. External reuse is one agency within a department reusing a service component provided by another agency in another department. A good example of this is an E-Gov initiative service being reused by multiple organizations across the federal government. Funding Percentage: Please provide the percentage of the BY requested funding amount used for each service component listed in the table. If external, provide the funding level transferred to another agency to pay for the service. | | Agency
Component
Name | Agency Component
Description | Service Type | Component | Reused
Component
Name | Reused
UPI | Internal
or
External
Reuse? | Funding
% | |---|-----------------------------|--|--|-------------------------------------|-----------------------------|---------------|--------------------------------------|--------------| | 1 | Distributed
Data Centers | EOSDIS distributed data centers facilitate the creation of science data products and provide the science data products to users. | Customer
Relationship
Management | Product
Management | | | No Reuse | 5 | | 2 | Distributed
Data Centers | EOSDIS distributed data centers allow users to create a standing order for selected data products as they come available. | Customer
Relationship
Management | Customer /
Account
Management | | | No Reuse | 2 | | 3 | ESDIS Project
Office | EOSDIS sponsors an annual independent customer satisfaction survey to collect and analyze data product user information and gather user feedback | Customer
Relationship
Management | Customer
Feedback | No Reuse | 2 | |----|---|---|--|--------------------------------------|----------|---| | 4 | Distributed
Data Centers | EOSDIS data centers post guidance and FAQs responses on their web sites. | Customer
Initiated
Assistance | Online Help | No Reuse | 2 | | 5 | ECHO and
Distributed
Data Centers | EOSDIS users access the
ECHO and data center
web sites to search and
order data products or
access data services | Customer
Initiated
Assistance | Self-Service | No Reuse | 6 | | 6 | Distributed
Data Centers | EOSDIS data centers
provide links on their web
sites and for information
(address, phone, email)
to support solicitation of
support from users | Customer
Initiated
Assistance | Assistance
Request | No Reuse | 2 | | 7 | ESDIS Project
Office | The ESDIS Project office solicits and evaluates, then decides and guides the implementation of changes to the EOSDIS business processes and hardware/software components. | Management
of Processes | Change
Management | No Reuse | 2 | | 8 | ESDIS Project
Configuration
Change
Request
System | The ESDIS CCR system supports control the EOSDIS hardware and software environments. | Management
of Processes | Configuration
Management | No Reuse | 2 | | 9 | EOS Networks | EOSDIS ensures end-to-
end network connectivity
between users and
geographically distributed
EOSDIS data centers | Organizational
Management | Network
Management | No Reuse | 2 | | 10 | ECHO/WIST | The EOS ClearingHOuse (ECHO) supports efficient discovery and access to Earth Science data. It is a metadata clearinghouse and order broker. | Supply Chain
Management | Catalog
Management | No Reuse | 2 | | 11 | Distributed
Data Centers | EOSDIS data centers provide on-line services to allow the placement of a request for science data products. | Supply Chain
Management | Ordering /
Purchasing | No Reuse | 2 | | 12 | Science Data
Processing
Segment | The Science Data
Processing Segment
provides access to data
and information in the
archive | Knowledge
Management | Information
Retrieval | No Reuse | 4 | | 13 | Science Data
Processing
Segment | The Science Data Processing Segment stores data in the | Knowledge
Management | Information
Mapping /
Taxonomy | No Reuse | 2 | | 21 | Science
Investigator-
led Processing | The Science Investigator-
led Processing Systems
(SIPSs) produce most of | Data
Management | Extraction and Transformation | No Reuse | 10 | |----|--|--|-------------------------|--|----------|----| | | Science Data
Processing
Segment | The Science Data Processing Segment at the EOSDIS Distributed Data Centers maintain and administer metadata for the science data products they store. | Data
Management | Meta Data
Management | No Reuse | 2 | | 19 | Science Data
Processing
Segment | The Science Data Processing Segment at the EOSDIS Distributed Data Centers archive and store large volumes of science data. | Data
Management | Data
Warehouse | No Reuse | 4 | | 18 | Distributed
Data Centers | EOSDIS Distributed Data
Centers make available or
provide science data to
users and other data
centers. | Data
Management | Data Exchange | No Reuse | 2 | | 17 | Distributed
Data Centers | EOSDIS data centers provide online services to plot or graphical images to assist users to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. | Visualization | Mapping /
Geospatial /
Elevation / GPS | No Reuse | 5 | | 16 | Distributed
Data Centers | EOSDIS data centers provide online services to plot or graphical images to assist users to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. | Visualization | Graphing /
Charting | No Reuse | 5 | | 15 | Distributed
Data Centers | EOSDIS data centers collect and store science data and the science algorithms for producing the data products. | Knowledge
Management | Knowledge
Capture | No Reuse | 5 | | 14 | Distributed
Data Centers | EOSDIS distributed data centers share concepts and software, plus are interconnected to exchange data. | Knowledge
Management | Information
Sharing | No Reuse | 5 | | | | Hierarchical Data Format (HDF) as a standard way of organizing the science data to assists users in the transfer and manipulation of scientific data across diverse operating systems and computer platforms. | | | | | | | Systems
(SIPSs) | the EOS standard products from science data. | | | | | |----|--|---|-----------------------------------|--|----------|---| | 22 | ESDIS Project
Office | The ESDIS Project Office oversees the redesigning of elements of the EOSDIS from disparate information systems into systems with a common set of data structures and rules. | Development
and
Integration | Enterprise
Application
Integration | No Reuse | 4 | | 23 | ECHO | ECHO provides the middleware to support the organization of data from separate data sources into a single source for capturing information into the system | Development
and
Integration | Data
Integration | No Reuse | 2 | | 24 | Science Data
Processing
Segment | The Science Data Processing Segment at the EOSDIS data centers supports retrieval of science data and data products that satisfy specific query selection criteria. | Search | Query | No Reuse | 4 | | 25 | Science Data
Processing
Segment | The Science Data Processing Segment at the EOSDIS data centers supports the selection and retrieval of science data products organized by shared characteristics (such as geospatial or physical parameters). | Search | Classification | No Reuse | 2 | | 26 | Science Data
Processing
Segment | The Science Data Processing Segment at the EOSDIS data centers provides on-line services to support retrieval of science data products based on imputing characteristics from patterns in the in the data. | Search | Pattern
Matching | No Reuse | 2 | | | Science
Investigator-
led Processing
Systems
(SIPSs) | At the Science Investigator-led Processing Systems (SIPSs), most processes for production and managing data products are automated | Tracking and
Workflow | Process
Tracking | No Reuse | 4 | | 28 | Distributed
Data Centers | The individual digital data products managed at the data centers are identified and stored to support collection and summarization. | Content
Management | Tagging and
Aggregation | No Reuse | 2 | | 29 | Distributed
Data Centers | The EOSDIS data centers maintain a data archive | Document
Management | Library /
Storage | No Reuse | 5 | | | and the metadata describing those data. | | | | | | | |--|---|--|--|--|--|--|--| |--|---|--|--|--|--|--|--| 5. To demonstrate how this major IT investment aligns with the FEA Technical Reference Model (TRM), please list the Service Areas, Categories, Standards, and Service Specifications supporting this IT investment. FEA SRM Component: Service Components identified in the previous question should be entered in this column. Please enter multiple rows for FEA SRM Components supported by multiple TRM Service Specifications. Service Specification: In the Service Specification field, Agencies should provide information on the specified technical standard or vendor product mapped to the FEA TRM Service Standard, including model or version numbers, as appropriate. | | SRM
Component | Service Area | Service
Category | Service
Standard | Service Specification (i.e., vendor and product name) | |----|--|---|-------------------------|--|--| | 1 | Online Help | Service Access
and Delivery | Access
Channels | Web Browser | Internet Explorer, Mozilla Firefox | | 2 | Customer /
Account
Management | Service Access
and Delivery | Access
Channels | Collaboration /
Communications | Microsoft Outlook and Entourage | | 3 | Product
Management | Service Access
and Delivery | Access
Channels | Other Electronic
Channels | FTP Client/Server, ftp, scp, apache, veritas,
TPSSM, StorNext, ACSLS, CVS, Portus, Permeo
Application Security Platform, bbFTP | | 4 | Product
Management | Service Access
and Delivery | Delivery
Channels | Internet | Internet2 IP backbone, NISN, Anonymous ftp,
Mozilla, Netscape, FRP Beans, Wu-FTP, SunOne,
FTP Beans | | 5 | Information
Sharing | Service Access and Delivery | Service
Requirements | Hosting | APACHE | | 6 | Network
Management | Service Access and Delivery | Service
Transport | Supporting
Network Services | POP, X.500, SMTP Mail program, LDAP, Legato
Networker Client | | 7 | Network
Management | Service Access and Delivery | Service
Transport | Service Transport | TCP/IP, Aspera, HTTPS, FTP | | 8 | Data Exchange | Service
Platform and
Infrastructure | Support
Platforms | Independent
Platform | Java 2 Enterprise Edition (J2EE) , Linux, IRIX, AIX | | 9 | Data Exchange | Service
Platform and
Infrastructure | Support
Platforms | Dependent
Platform | Windows XP, MAC OS X, SGIÂ Origin 2000, Dell 6350,EMC Clarion FC4700 , SUN Microsystems, Solaris | | 10 | Product
Management | Service
Platform and
Infrastructure | Delivery Servers | Web Servers | Apache, Tomcat, BEA WebLogic | | 11 | Data Exchange | Service
Platform and
Infrastructure | Delivery Servers | Application
Servers | Hewlett-Packard UNIX servers /Hardware and HP-
UX 11.0 operating system (Hardware), Sun
Servers/ Hardware, Dell 6nnn, Jboss | | 12 | Extraction and Transformation | Service
Platform and
Infrastructure | Software
Engineering | Integrated
Development
Environment | PERL, IDL, Eclipse | | 13 | Configuration
Management | Service
Platform and
Infrastructure | Software
Engineering | Software
Configuration
Management | ClearCase, Â Remedy, Rational Clearcase and
TestTrack Pro, Sybase ASE, TRAC, Subversion,
Tripwire | | 14 | Enterprise
Application
Integration | Service
Platform and
Infrastructure | Software
Engineering | Test Management | JAVA Test Framework, Trac, Loadrunner,
TestTrack_Pro_Client | | 15 | Information
Sharing | Service
Platform and | Software
Fngineering | Modeling | Visual Paradigm, Rogue Wave Libraries, Sun Studio
10 Compilers. Linux Compilers. 1-Builder. Forcheck | | | Sharing | Platform and
Infrastructure | Engineering | | 10 Compilers, Linux Compilers, J-Builder, Forcheck,
Perl and Perl modules, Rational Rose, Java SDK &
libraries, Sybase (Open Client) HDF Libraries,
NetInsight | |----|--|---|-------------------------------------|--|--| | 16 | Knowledge
Capture | Service
Platform and
Infrastructure | Database /
Storage | Database | Oracle RDBMS, Sybase, MySQL, INFORMIX,
Ingres, ACCESS, SQL Server | | 17 | Data Warehouse | Service
Platform and
Infrastructure | Database /
Storage | Storage | STORNEXT, StorageTek SDLT tape libraries,
StorageTek 9710, Ampex DCRSi High Density
Digital Tapes and Recorders, BoxHill, A1000, MTI,
Andataco Raids/ Hardware, STK 9940B tape
drives, AMASS, ADIC, Navisphere_Host_Agent,
SANtricity_Storage_Manager | | 18 | Extraction and
Transformation | Service
Platform and
Infrastructure | Hardware /
Infrastructure | Servers /
Computers | RAID, Windows XP Sun (Solaris), Red Hat Linux for Dell, HP, DEC | | 19 | Network
Management | Service
Platform and
Infrastructure | Hardware /
Infrastructure | Wide Area
Network (WAN) | NISN, Internet2, SINET, APAN, Ionet | | 20 | Network
Management | Service
Platform and
Infrastructure | Hardware /
Infrastructure | Local Area
Network (LAN) | Ebnet LAN, SEN, Ionet LAN | | 21 | Network
Management | Service
Platform and
Infrastructure | Hardware /
Infrastructure | Network Devices /
Standards | Gigabit ethernet, Cisco, Portus, Permeo
Application, Security Platform,
Big_Brother_Client/server | | 22 | Network
Management | Component
Framework | Security | Supporting
Security Services | F-secure, ssh, scp,sftp | | 23 | Graphing /
Charting | Component
Framework | User
Presentation /
Interface | Static Display | HTML | | 24 | Mapping /
Geospatial /
Elevation / GPS | Component
Framework | User
Presentation /
Interface | Dynamic Server-
Side Display | Visual Paradigm, SQS, Web GUI's, POSTGRES SQL, Sun Ray | | 25 | Query | Component
Framework | Business Logic | Independent
Platform | Open Data Access Protocol (OpenDAP), C++,
Java, SQL Programming languages | | 26 | Query | Component
Framework | Business Logic | Dependent
Platform | Java SDK, JAF, JAXP, Java Web Services Developer
Pack, JavaMail, JDOM FTP (Java Beans) | | 27 | Catalog
Management | Component
Framework | Data
Interchange | Data Exchange | XML, SOAP | | 28 | Catalog
Management | Component
Framework | Data
Management | Database
Connectivity | Jconnect, JDBC API, RSI IDL | | 29 | Data Integration | Service
Interface and
Integration | Integration | Middleware | PostgreSQL/ software, Storage Resource Broker (SRB),PostgreSQL/MySQL(Open Source Software) | | 30 | Customer
Feedback | Service
Interface and
Integration | Integration | Enterprise
Application
Integration | Rational Clearcase and TestTrack Pro, Sybase ASE, TRAC, Subversion, Primavera Project Planner, Purify | | 31 | Information
Mapping /
Taxonomy | Service
Interface and
Integration | Interoperability | Data Format /
Classification | Extensible Markup Language (XML), HDF libraries, RSI IDL | | 32 | Information
Mapping /
Taxonomy | Service
Interface and
Integration | Interoperability | Data Types /
Validation | XML Schema, OPeNDAP servers | | 33 | Information
Retrieval | Service
Interface and
Integration | Interoperability | Data
Transformation | XSLT, Â Hierarchical Data Format (HDF) | |----|--|---|-----------------------|--|--| | 34 | Self-Service | Service
Interface and
Integration | Interface | Service Discovery | Systinet: WASP UDDI | | 35 | Self-Service | Service
Interface and
Integration | Interface | Service
Description /
Interface | Systinet: WASP UDDI | | 36 | Ordering /
Purchasing | Service Access and Delivery | Access
Channels | Web Browser | Internet Explorer, Mozilla Firefox | | 37 | Online Help | Service Access and Delivery | Access
Channels | Collaboration /
Communications | Microsoft Outlook and Entourage | | 38 | Assistance
Request | Service Access and Delivery | Access
Channels | Collaboration /
Communications | Microsoft Outlook and Entourage | | 39 | Ordering /
Purchasing | Service Access and Delivery | Access
Channels | Collaboration /
Communications | Microsoft Outlook and Entourage | | 40 | Self-Service | Service Access
and Delivery | Access
Channels | Other Electronic
Channels | FTP Client/Server, ftp, scp, apache, veritas, TPSSM, StorNext, ACSLS, CVS, Portus, Permeo Application Security Platform, bbFTP | | 41 | Assistance
Request | Service Access
and Delivery | Access
Channels | Other Electronic
Channels | FTP Client/Server, ftp, scp, apache, veritas,
TPSSM, StorNext, ACSLS, CVS, Portus, Permeo
Application Security Platform, bbFTP | | 42 | Extraction and
Transformation | Service
Platform and
Infrastructure | Support
Platforms | Independent
Platform | Java 2 Enterprise Edition (J2EE) , Linux, IRIX, AIX | | 43 | Extraction and Transformation | Service
Platform and
Infrastructure | Support
Platforms | Dependent
Platform | Windows XP, MAC OS X, SGIÂ Origin 2000, Dell 6350,EMC Clarion FC4700 , SUN Microsystems, Solaris | | 44 | Data Warehouse | Service
Platform and
Infrastructure | Database /
Storage | Database | Oracle RDBMS, Sybase, MySQL, INFORMIX,
Ingres, ACCESS, SQL Server | | 45 | Classification | Component
Framework | Business Logic | Independent
Platform | Open Data Access Protocol (OpenDAP), C++,
Java, SQL Programming languages | | 46 | Pattern Matching | Component
Framework | Business Logic | Independent
Platform | Open Data Access Protocol (OpenDAP), C++,
Java, SQL Programming languages | | 47 | Classification | Component
Framework | Business Logic | Dependent
Platform | Java SDK, JAF, JAXP, Java Web Services Developer
Pack, JavaMail, JDOM FTP (Java Beans) | | 48 | Pattern Matching | Component
Framework | Business Logic | Dependent
Platform | Java SDK, JAF, JAXP, Java Web Services Developer
Pack, JavaMail, JDOM FTP (Java Beans) | | 49 | Data Exchange | Component
Framework | Data
Interchange | Data Exchange | XML, SOAP | | 50 | Query | Service
Interface and
Integration | Integration | Middleware | PostgreSQL/ software, Storage Resource Broker (SRB),PostgreSQL/MySQL(Open Source Software) | | 51 | Change
Management | Service
Interface and
Integration | Integration | Enterprise
Application
Integration | Rational Clearcase and TestTrack Pro, Sybase ASE, TRAC, Subversion, Primavera Project Planner, Purify | | 52 | Enterprise
Application
Integration | Service
Interface and
Integration | Integration | Enterprise
Application
Integration | Rational Clearcase and TestTrack Pro, Sybase ASE, TRAC, Subversion, Primavera Project Planner, Purify | | 53 | Process Tracking | Service
Interface and
Integration | Integration | Enterprise
Application
Integration | Rational Clearcase and TestTrack Pro, Sybase ASE, TRAC, Subversion, Primavera Project Planner, Purify | |----|--|---|-------------------------|--|---| | 54 | Information
Sharing | Service
Interface and
Integration | Interoperability | Data Format /
Classification | Extensible Markup Language (XML), HDF libraries, RSI IDL | | 55 | Meta Data
Management | Service
Interface and
Integration | Interoperability | Data Format /
Classification | Extensible Markup Language (XML), HDF libraries, RSI IDL | | 56 | Library / Storage | Service
Interface and
Integration | Interoperability | Data Format /
Classification | Extensible Markup Language (XML), HDF libraries, RSI IDL | | 57 | Meta Data
Management | Service
Interface and
Integration | Interoperability | Data Types /
Validation | XML Schema, OPeNDAP servers | | 58 | Tagging and
Aggregation | Service
Interface and
Integration | Interoperability | Data Types /
Validation | XML Schema, OPeNDAP servers | | 59 | Mapping /
Geospatial /
Elevation / GPS | Service
Interface and
Integration | Interoperability | Data
Transformation | XSLT, Â Hierarchical Data Format (HDF),
Shockwave Flash | | 60 | Information
Sharing | Service Access
and Delivery | Service
Requirements | Hosting | APACHE | 6. Will the application leverage existing components and/or applications across the Government (i.e., FirstGov, Pay.Gov, etc)? yes 6.a. If yes, please describe. Yes. For performing its infrastructure business functions, the ESDIS Project will utilize as appropriate the services provided by existing and other Federal E-Government initiatives. # **PART THREE** ### RISK You should perform a risk assessment during the early planning and initial concept phase of the investment's life-cycle, develop a risk-adjusted life-cycle cost estimate and a plan to eliminate, mitigate or manage risk, and be actively managing risk throughout the investment's life-cycle. Answer the following questions to describe how you are managing investment risks. 1. Does the investment have a Risk Management Plan? yes 1.a. If yes, what is the date of the plan? 2008-07-02 1.b. Has the Risk Management Plan been significantly changed since last year's submission to OMB? no # **COST & SCHEDULE** 1. Was operational analysis conducted? ves 1.a. If yes, provide the date the analysis was completed. 2008-07-08 What were the results of your operational analysis? EOSDIS should continue to provide regular operations, while completing the planned Evolution activities.